40 research outputs found

    Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios

    Get PDF
    The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air–sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961–2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001–2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air–sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070–2099 period compared to 1961–1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in General Circulation Models, has the largest impact on the evolution of the Mediterranean water masses, followed by the choice of the socio-economic scenario. The choice of river runoff and atmospheric forcing both have a smaller impact. The state of the MTHC during the historical period is found to have a large influence on the transfer of surface anomalies toward depth. Besides, subsurface currents are substantially modified in the Ionian Sea and the Balearic region. Finally, the response of thermosteric sea level ranges from +34 to +49 cm (2070–2099 vs. 1961–1990), mainly depending on the Atlantic forcing

    Coastal sea level monitoring in the Mediterranean and Black seas

    Get PDF
    Employed for over a century, the traditional way of monitoring sea level variability by tide gauges – in combination with modern observational techniques like satellite altimetry – is an inevitable ingredient in sea level studies over the climate scales and in coastal seas. The development of the instrumentation, remote data acquisition, processing, and archiving in the last decades has allowed the extension of the applications to a variety of users and coastal hazard managers. The Mediterranean and Black seas are examples of such a transition – while having a long tradition of sea level observations with several records spanning over a century, the number of modern tide gauge stations is growing rapidly, with data available both in real time and as a research product at different time resolutions. As no comprehensive survey of the tide gauge networks has been carried out recently in these basins, the aim of this paper is to map the existing coastal sea level monitoring infrastructures and the respective data availability. The survey encompasses a description of major monitoring networks in the Mediterranean and Black seas and their characteristics, including the type of sea level sensors, measuring resolutions, data availability, and existence of ancillary measurements, altogether collecting information about 240 presently operational tide gauge stations. The availability of the Mediterranean and Black seas sea level data in the global and European sea level repositories has been also screened and classified following their sampling interval and level of quality check, pointing to the necessity of harmonization of the data available with different metadata and series in different repositories. Finally, an assessment of the networks' capabilities for their use in different sea level applications has been done, with recommendations that might mitigate the bottlenecks and ensure further development of the networks in a coordinated way, a critical need in the era of human-induced climate changes and sea level rise.En prens

    The prediction of floods in Venice: methods, models and uncertainty (review article)

    Get PDF
    This paper reviews the state of the art in storm surge forecasting and its particular application in the northern Adriatic Sea. The city of Venice already depends on operational storm surge forecasting systems to warn the population and economy of imminent flood threats, as well as help to protect the extensive cultural heritage. This will be more important in the future, with the new mobile barriers called MOSE (MOdulo Sperimentale Elettromeccanico, Experimental Electromechanical Module) that will be completed by 2021. The barriers will depend on accurate storm surge forecasting to control their operation. In this paper, the physics behind the flooding of Venice is discussed, and the state of the art of storm surge forecasting in Europe is reviewed. The challenges for the surge forecasting systems are analyzed, especially in view of uncertainty. This includes consideration of selected historic extreme events that were particularly difficult to forecast. Four potential improvements are identified: (1) improve meteorological forecasts, (2) develop ensemble forecasting, (3) assimilation of water level measurements and (4) develop a multimodel approach

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    The Copernicus Marine Environment Monitoring Service Ocean State Report

    Get PDF
    The Copernicus Marine Environment Monitoring Service (CMEMS) Ocean State Report (OSR) provides an annual report of the state of the global ocean and European regional seas for policy and decision-makers with the additional aim of increasing general public awareness about the status of, and changes in, the marine environment. The CMEMS OSR draws on expert analysis and provides a 3-D view (through reanalysis systems), a view from above (through remote-sensing data) and a direct view of the interior (through in situ measurements) of the global ocean and the European regional seas. The report is based on the unique CMEMS monitoring capabilities of the blue (hydrography, currents), white (sea ice) and green (e.g. Chlorophyll) marine environment. This first issue of the CMEMS OSR provides guidance on Essential Variables, large-scale changes and specific events related to the physical ocean state over the period 1993–2015. Principal findings of this first CMEMS OSR show a significant increase in global and regional sea levels, thermosteric expansion, ocean heat content, sea surface temperature and Antarctic sea ice extent and conversely a decrease in Arctic sea ice extent during the 1993–2015 period. During the year 2015 exceptionally strong large-scale changes were monitored such as, for example, a strong El Niño Southern Oscillation, a high frequency of extreme storms and sea level events in specific regions in addition to areas of high sea level and harmful algae blooms. At the same time, some areas in the Arctic Ocean experienced exceptionally low sea ice extent and temperatures below average were observed in the North Atlantic Ocean

    Choice of the initial antiretroviral treatment for HIV-positive individuals in the era of integrase inhibitors

    Get PDF
    BACKGROUND: We aimed to describe the most frequently prescribed initial antiretroviral therapy (ART) regimens in recent years in HIV-positive persons in the Cohort of the Spanish HIV/AIDS Research Network (CoRIS) and to investigate factors associated with the choice of each regimen. METHODS: We analyzed initial ART regimens prescribed in adults participating in CoRIS from 2014 to 2017. Only regimens prescribed in >5% of patients were considered. We used multivariable multinomial regression to estimate Relative Risk Ratios (RRRs) for the association between sociodemographic and clinical characteristics and the choice of the initial regimen. RESULTS: Among 2874 participants, abacavir(ABC)/lamivudine(3TC)/dolutegavir(DTG) was the most frequently prescribed regimen (32.1%), followed by tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC)/elvitegravir(EVG)/cobicistat(COBI) (14.9%), TDF/FTC/rilpivirine (RPV) (14.0%), tenofovir alafenamide (TAF)/FTC/EVG/COBI (13.7%), TDF/FTC+DTG (10.0%), TDF/FTC+darunavir/ritonavir or darunavir/cobicistat (bDRV) (9.8%) and TDF/FTC+raltegravir (RAL) (5.6%). Compared with ABC/3TC/DTG, starting TDF/FTC/RPV was less likely in patients with CD4100.000 copies/mL. TDF/FTC+DTG was more frequent in those with CD4100.000 copies/mL. TDF/FTC+RAL and TDF/FTC+bDRV were also more frequent among patients with CD4<200 cells//muL and with transmission categories other than men who have sex with men. Compared with ABC/3TC/DTG, the prescription of other initial ART regimens decreased from 2014-2015 to 2016-2017 with the exception of TDF/FTC+DTG. Differences in the choice of the initial ART regimen were observed by hospitals' location. CONCLUSIONS: The choice of initial ART regimens is consistent with Spanish guidelines' recommendations, but is also clearly influenced by physician's perception based on patient's clinical and sociodemographic variables and by the prescribing hospital location

    Copernicus Ocean State Report, issue 6

    Get PDF
    The 6th issue of the Copernicus OSR incorporates a large range of topics for the blue, white and green ocean for all European regional seas, and the global ocean over 1993–2020 with a special focus on 2020

    Overlapping sea level time series measured using different technologies: an example from the REDMAR Spanish network

    Get PDF
    This paper addresses the problems of overlapping sea level time series measured using different technologies and sometimes from different locations inside a harbour. The renovation of the Spanish REDMAR (RED de MAReĂłgrafos) sea level network is taken here as an example of the difficulties encountered: up to seventeen old tide gauge stations have been replaced by radar tide gauges all around the Spanish coast, in order to fulfil the new international requirements on tsunami detection. Overlapping periods between old and new stations have allowed the comparison of records in different frequency ranges and the determination of the impact of this change of instrumentation on the long-term sea level products such as tides, surges and mean sea levels. The differences encountered are generally within the values expected, taking into account the characteristics of the different sensors, the different sampling strategies and sometimes the different locations inside the harbours. However, our analysis has also revealed in some cases the presence of significant scale errors that, overlapping with datum differences and uncertainties, as well as with hardware problems in many new radar gauges, may hinder the generation of coherent and continuous sea level time series. Comparisons with nearby stations have been combined with comparisons with altimetry time series close to each station in order to better determine the sources of error and to guarantee the precise relationships between the sea level time series from the old and the new tide gauges

    Evaluating the surface circulation in the Ebro delta (northeastern Spain) with quality-controlled high-frequency radar measurements

    No full text
    The Ebro River delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three-site standard-range (13.5 MHz) CODAR SeaSonde high-frequency (HF) radar was deployed in December 2013. The main goal of this work is to explore basic features of the sea surface circulation in the Ebro deltaic region as derived from reliable HF radar surface current measurements. For this aim, a combined quality control methodology was applied: firstly, 1-year long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters was conducted to infer both radar site status and HF radar system performance. The signal-to-noise ratio at the monopole exhibited a consistent monthly evolution, although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be sporadic episodes since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May–October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and root mean square error (RMSE) values emerged in the ranges [0.58–0.83] and [4.02–18.31] cm s−1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely, the predominant southwestward flow, the coastal clockwise eddy confined south of the Ebro delta mouth, or the Ebro River impulsive-type freshwater discharge. The EOF analysis related the flow response to local wind forcing and confirmed that the surface current field evolved in space and time according to three significantly dominant modes of variability
    corecore